A Refinement of Discrete Particle Swarm Optimization for Large-scale Truss Structures
نویسندگان
چکیده
This paper proposes a refined version of particle swarm optimization technique for the optimum design of steel structures. Swarm is composed of a number of particles and each particle in the swarm represents a candidate solution of the optimum design problem. Design constraints in accordance with ASD-AISC (Allowable Stress Design Code of American Institute of Steel Institution) are imposed by the particle swarm optimization based optimum design algorithm developed. A constraint handling method called the ‘penalty function method’ is introduced to maintain acceptable solutions. The refined version of the particle swarm optimization algorithm proposed in this paper is easy to implement and the results and convergence performance are better than the simple particle swarm optimization algorithm and some other meta-heuristic optimization techniques. The effect of different inertia weight parameters in finding the optimum design is also tested in two numerical examples. Keyword: Meta-heuristic optimization; discrete particle swarm; trusses; discrete particle swarm; steel structures
منابع مشابه
A Hybrid Particle Swarm Optimization and Genetic Algorithm for Truss Structures with Discrete Variables
A new hybrid algorithm of Particle Swarm Optimization and Genetic Algorithm (PSOGA) is presented to get the optimum design of truss structures with discrete design variables. The objective function chosen in this paper is the total weight of the truss structure, which depends on upper and lower bounds in the form of stress and displacement limits. The Particle Swarm Optimization basically model...
متن کاملDISCRETE AND CONTINUOUS SIZING OPTIMIZATION OF LARGE-SCALE TRUSS STRUCTURES USING DE-MEDT ALGORITHM
Design optimization of structures with discrete and continuous search spaces is a complex optimization problem with lots of local optima. Metaheuristic optimization algorithms, due to not requiring gradient information of the objective function, are efficient tools for solving these problems at a reasonable computational time. In this paper, the Doppler Effect-Mean Euclidian Distance Threshold ...
متن کاملPARTICLE SWARM-GROUP SEARCH ALGORITHM AND ITS APPLICATION TO SPATIAL STRUCTURAL DESIGN WITH DISCRETE VARIABLES
Based on introducing two optimization algorithms, group search optimization (GSO) algorithm and particle swarm optimization (PSO) algorithm, a new hybrid optimization algorithm which named particle swarm-group search optimization (PS-GSO) algorithm is presented and its application to optimal structural design is analyzed. The PS-GSO is used to investigate the spatial truss structures with discr...
متن کاملA HYBRID ALGORITHM FOR SIZING AND LAYOUT OPTIMIZATION OF TRUSS STRUCTURES COMBINING DISCRETE PSO AND CONVEX APPROXIMATION
An efficient method for size and layout optimization of the truss structures is presented in this paper. In order to this, an efficient method by combining an improved discrete particle swarm optimization (IDPSO) and method of moving asymptotes (MMA) is proposed. In the hybrid of IDPSO and MMA, the nodal coordinates defining the layout of the structure are optimized with MMA, and afterwards the...
متن کاملOPTIMIZATION OF LARGE-SCALE TRUSS STRUCTURES USING MODIFIED CHARGED SYSTEM SEARCH
Optimal design of large-scale structures is a rather difficult task and the computational efficiency of the currently available methods needs to be improved. In view of this, the paper presents a modified Charged System Search (CSS) algorithm. The new methodology is based on the combination of CSS and Particle Swarm Optimizer. In addition, in order to improve optimization search, the sequence o...
متن کامل